General instructions for Students: Whatever be the notes provided, everything must be copied in the Maths copy and then do the HOMEWORK in the same copy.

$$CLASS - IX$$

MATHEMATICS

11. Mid – Point Theorem (Part – I)

Mid - Point Theorem

Statement : The line segment joining the mid – points of any two sides of a triangle

is parallel to the third side and is equal to half of it.

Given: In \triangle ABC, E and F are the mid – points of sides AB and AC respectively.

To prove: $EF \parallel BC$ and $EF = \frac{1}{2}BC$.

Construction: Draw CD || BA, meeting EF produced at D.

Proof: $In \triangle AEF$ and $\triangle CDF$

$$AF = CF$$
 (Given)
$$\angle AFE = \angle CFD$$
 (Vert. opp. $\angle s$)
$$\angle EAF = \angle DCF$$
 (Alt. int. $\angle s$)
$$\triangle AEF \cong \triangle CDF$$
 (ASA congruence rule)

$$AE = CD$$
 and $EF = FD$ $(C.P.C.T.)$

$$But, AE = EB$$

$$\therefore CD = EB \text{ and } CD \parallel BA \quad (const.)$$

: BCDE is a parallelogram.

$$EF \parallel BC \quad and \quad ED = BC$$

$$EF = \frac{1}{2} ED$$

$$EF = \frac{1}{2} BC$$

Hence, $EF \parallel BC$ and $EF = \frac{1}{2}BC$. Proved.

Converse of Mid – Point Theorem

Statement : The line drawn through the mid – point of one side of a triangle parallel

to another side bisects the third side.

In \triangle ABC, E is the mid – point of side AB.

Line I drawn through E and parallel to BC meeting AC at F.

 $: EF bisects AC \Rightarrow F is the mid - point of AC$

i.e. AF = FC.

Theorem on intercepts

Statement: If a transversal makes equal intercepts on three(or more) parallel lines,
then any other line cutting them also makes equal intercepts.

Three parallel lines l, m and n are cut by a transversal p at A, B and C respectively such that AB = BC.

Also q is another transversal cutting l, m and n at D, E and F respectively.

Through E, draw a line r parallel to p, meeting l, m and n at G, E and H respectively.

 \therefore E is the mid – point of DF

i.e. DE = EF

$Q.No.\ 2$ Prove that the four triangles formed by joining in pairs of mid – points

of the sides of a triangle are congruent to each other.

Solution: Let D, E and F be the mid – points of sides AB, BC and AC respectively.

$$DF \parallel BC \text{ and } DF = \frac{1}{2} BC \text{ (Mid-point Theorem)} \dots \dots (i)$$

 \Rightarrow DF || BE and DF = BE

: BEFD is a parallelogram

 $\triangle BED \cong \triangle DEF$

[DE is a diagonal of $a \parallel gm BEFD$.

The diagonal of a parallelogram divides into two congruent triangles.]

Similarly, $\triangle ADF \cong \triangle DEF$ and $\triangle CEF \cong \triangle DEF$ Proved.

$Q.\,No.\,\,8\,$ In the adjoining figure, ABCD is a parallelogram. E and F are mid – points

of the sides AB and CD respectively. The straight lines AF and BF meet

the straight lines ED and EC in points G and H respectively. Prove that

(i) \triangle HEB $\cong \triangle$ HCF (ii) GEHF is a parallelogram

Solution: In \triangle HEB and \triangle HCF, \angle BHE = \angle CHF (Vert.opp. \angle s)

$$\angle HEB = \angle HCF$$
 (Alt. int. $\angle s$)

$$EB = FC$$
 (: $AB = DC$ and E and F are mid – points

of the sides AB and CD)

$$\triangle HEB \cong \triangle HCF$$
 (AAS congruence rule) Proved.

$$HB = HF$$
 (C.P.C.T.)

Similarly.
$$GA = GF$$

In
$$\triangle$$
 ABF, GE || FB and GE = $\frac{1}{2}$ FB [Mid – point theorem]

$$\Rightarrow \qquad GE \parallel FH \text{ and } GE = FH \qquad \qquad [FH = \frac{1}{2} FB]$$

: GEHF is a parallelogram Proved.

HOMEWORK